Serveur d'exploration sur les effecteurs de phytopathogènes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Putrescine elicits ROS-dependent activation of the salicylic acid pathway in Arabidopsis thaliana.

Identifieur interne : 000069 ( Main/Exploration ); précédent : 000068; suivant : 000070

Putrescine elicits ROS-dependent activation of the salicylic acid pathway in Arabidopsis thaliana.

Auteurs : Changxin Liu [Espagne] ; Kostadin E. Atanasov [Espagne] ; Nazanin Arafaty [Espagne] ; Ester Murillo [Espagne] ; Antonio F. Tiburcio [Espagne] ; Jürgen Zeier [Allemagne] ; Rubén Alcázar [Espagne]

Source :

RBID : pubmed:32839979

Abstract

Polyamines are small amines that accumulate during stress and contribute to disease resistance through as yet unknown signaling pathways. Using a comprehensive RNA-sequencing analysis, we show that early transcriptional responses triggered by each of the most abundant polyamines (putrescine, spermidine, spermine, thermospermine and cadaverine) exhibit specific quantitative differences, suggesting that polyamines (rather than downstream metabolites) elicit defense responses. Signaling by putrescine, which accumulates in response to bacteria that trigger effector triggered immunity (ETI) and systemic acquired resistance (SAR), is largely dependent on the accumulation of hydrogen peroxide, and is partly dependent on salicylic acid (SA), the expression of ENHANCED DISEASE SUSCEPTIBILITY (EDS1) and NONEXPRESSOR of PR GENES1 (NPR1). Putrescine elicits local SA accumulation as well as local and systemic transcriptional reprogramming that overlaps with SAR. Loss-of-function mutations in arginine decarboxylase 2 (ADC2), which is required for putrescine synthesis and copper amine oxidase (CuAO), which is involved in putrescine oxidation, compromise basal defenses, as well as putrescine and pathogen-triggered systemic resistance. These findings confirm that putrescine elicits ROS-dependent SA pathways in the activation of plant defenses.

DOI: 10.1111/pce.13874
PubMed: 32839979


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Putrescine elicits ROS-dependent activation of the salicylic acid pathway in Arabidopsis thaliana.</title>
<author>
<name sortKey="Liu, Changxin" sort="Liu, Changxin" uniqKey="Liu C" first="Changxin" last="Liu">Changxin Liu</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona</wicri:regionArea>
<placeName>
<settlement type="city">Barcelone</settlement>
<region nuts="2" type="region">Catalogne</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Atanasov, Kostadin E" sort="Atanasov, Kostadin E" uniqKey="Atanasov K" first="Kostadin E" last="Atanasov">Kostadin E. Atanasov</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona</wicri:regionArea>
<placeName>
<settlement type="city">Barcelone</settlement>
<region nuts="2" type="region">Catalogne</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Arafaty, Nazanin" sort="Arafaty, Nazanin" uniqKey="Arafaty N" first="Nazanin" last="Arafaty">Nazanin Arafaty</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona</wicri:regionArea>
<placeName>
<settlement type="city">Barcelone</settlement>
<region nuts="2" type="region">Catalogne</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Murillo, Ester" sort="Murillo, Ester" uniqKey="Murillo E" first="Ester" last="Murillo">Ester Murillo</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona</wicri:regionArea>
<placeName>
<settlement type="city">Barcelone</settlement>
<region nuts="2" type="region">Catalogne</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tiburcio, Antonio F" sort="Tiburcio, Antonio F" uniqKey="Tiburcio A" first="Antonio F" last="Tiburcio">Antonio F. Tiburcio</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona</wicri:regionArea>
<placeName>
<settlement type="city">Barcelone</settlement>
<region nuts="2" type="region">Catalogne</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zeier, Jurgen" sort="Zeier, Jurgen" uniqKey="Zeier J" first="Jürgen" last="Zeier">Jürgen Zeier</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Biology, Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Düsseldorf, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Biology, Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Düsseldorf</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Düsseldorf</region>
<settlement type="city">Düsseldorf</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Alcazar, Ruben" sort="Alcazar, Ruben" uniqKey="Alcazar R" first="Rubén" last="Alcázar">Rubén Alcázar</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona</wicri:regionArea>
<placeName>
<settlement type="city">Barcelone</settlement>
<region nuts="2" type="region">Catalogne</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32839979</idno>
<idno type="pmid">32839979</idno>
<idno type="doi">10.1111/pce.13874</idno>
<idno type="wicri:Area/Main/Corpus">000134</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000134</idno>
<idno type="wicri:Area/Main/Curation">000134</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000134</idno>
<idno type="wicri:Area/Main/Exploration">000134</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Putrescine elicits ROS-dependent activation of the salicylic acid pathway in Arabidopsis thaliana.</title>
<author>
<name sortKey="Liu, Changxin" sort="Liu, Changxin" uniqKey="Liu C" first="Changxin" last="Liu">Changxin Liu</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona</wicri:regionArea>
<placeName>
<settlement type="city">Barcelone</settlement>
<region nuts="2" type="region">Catalogne</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Atanasov, Kostadin E" sort="Atanasov, Kostadin E" uniqKey="Atanasov K" first="Kostadin E" last="Atanasov">Kostadin E. Atanasov</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona</wicri:regionArea>
<placeName>
<settlement type="city">Barcelone</settlement>
<region nuts="2" type="region">Catalogne</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Arafaty, Nazanin" sort="Arafaty, Nazanin" uniqKey="Arafaty N" first="Nazanin" last="Arafaty">Nazanin Arafaty</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona</wicri:regionArea>
<placeName>
<settlement type="city">Barcelone</settlement>
<region nuts="2" type="region">Catalogne</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Murillo, Ester" sort="Murillo, Ester" uniqKey="Murillo E" first="Ester" last="Murillo">Ester Murillo</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona</wicri:regionArea>
<placeName>
<settlement type="city">Barcelone</settlement>
<region nuts="2" type="region">Catalogne</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tiburcio, Antonio F" sort="Tiburcio, Antonio F" uniqKey="Tiburcio A" first="Antonio F" last="Tiburcio">Antonio F. Tiburcio</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona</wicri:regionArea>
<placeName>
<settlement type="city">Barcelone</settlement>
<region nuts="2" type="region">Catalogne</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zeier, Jurgen" sort="Zeier, Jurgen" uniqKey="Zeier J" first="Jürgen" last="Zeier">Jürgen Zeier</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Biology, Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Düsseldorf, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Biology, Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Düsseldorf</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Düsseldorf</region>
<settlement type="city">Düsseldorf</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Alcazar, Ruben" sort="Alcazar, Ruben" uniqKey="Alcazar R" first="Rubén" last="Alcázar">Rubén Alcázar</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona</wicri:regionArea>
<placeName>
<settlement type="city">Barcelone</settlement>
<region nuts="2" type="region">Catalogne</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plant, cell & environment</title>
<idno type="eISSN">1365-3040</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Polyamines are small amines that accumulate during stress and contribute to disease resistance through as yet unknown signaling pathways. Using a comprehensive RNA-sequencing analysis, we show that early transcriptional responses triggered by each of the most abundant polyamines (putrescine, spermidine, spermine, thermospermine and cadaverine) exhibit specific quantitative differences, suggesting that polyamines (rather than downstream metabolites) elicit defense responses. Signaling by putrescine, which accumulates in response to bacteria that trigger effector triggered immunity (ETI) and systemic acquired resistance (SAR), is largely dependent on the accumulation of hydrogen peroxide, and is partly dependent on salicylic acid (SA), the expression of ENHANCED DISEASE SUSCEPTIBILITY (EDS1) and NONEXPRESSOR of PR GENES1 (NPR1). Putrescine elicits local SA accumulation as well as local and systemic transcriptional reprogramming that overlaps with SAR. Loss-of-function mutations in arginine decarboxylase 2 (ADC2), which is required for putrescine synthesis and copper amine oxidase (CuAO), which is involved in putrescine oxidation, compromise basal defenses, as well as putrescine and pathogen-triggered systemic resistance. These findings confirm that putrescine elicits ROS-dependent SA pathways in the activation of plant defenses.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Data-Review" Owner="NLM">
<PMID Version="1">32839979</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>29</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-3040</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>43</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2020</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Plant, cell & environment</Title>
<ISOAbbreviation>Plant Cell Environ</ISOAbbreviation>
</Journal>
<ArticleTitle>Putrescine elicits ROS-dependent activation of the salicylic acid pathway in Arabidopsis thaliana.</ArticleTitle>
<Pagination>
<MedlinePgn>2755-2768</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/pce.13874</ELocationID>
<Abstract>
<AbstractText>Polyamines are small amines that accumulate during stress and contribute to disease resistance through as yet unknown signaling pathways. Using a comprehensive RNA-sequencing analysis, we show that early transcriptional responses triggered by each of the most abundant polyamines (putrescine, spermidine, spermine, thermospermine and cadaverine) exhibit specific quantitative differences, suggesting that polyamines (rather than downstream metabolites) elicit defense responses. Signaling by putrescine, which accumulates in response to bacteria that trigger effector triggered immunity (ETI) and systemic acquired resistance (SAR), is largely dependent on the accumulation of hydrogen peroxide, and is partly dependent on salicylic acid (SA), the expression of ENHANCED DISEASE SUSCEPTIBILITY (EDS1) and NONEXPRESSOR of PR GENES1 (NPR1). Putrescine elicits local SA accumulation as well as local and systemic transcriptional reprogramming that overlaps with SAR. Loss-of-function mutations in arginine decarboxylase 2 (ADC2), which is required for putrescine synthesis and copper amine oxidase (CuAO), which is involved in putrescine oxidation, compromise basal defenses, as well as putrescine and pathogen-triggered systemic resistance. These findings confirm that putrescine elicits ROS-dependent SA pathways in the activation of plant defenses.</AbstractText>
<CopyrightInformation>© 2020 John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Changxin</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Atanasov</LastName>
<ForeName>Kostadin E</ForeName>
<Initials>KE</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Arafaty</LastName>
<ForeName>Nazanin</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Murillo</LastName>
<ForeName>Ester</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tiburcio</LastName>
<ForeName>Antonio F</ForeName>
<Initials>AF</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zeier</LastName>
<ForeName>Jürgen</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Düsseldorf, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Alcázar</LastName>
<ForeName>Rubén</ForeName>
<Initials>R</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-3567-7586</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>BFU2017-87742-R</GrantID>
<Agency>Secretaría de Estado de Investigación, Desarrollo e Innovación</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>09</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Cell Environ</MedlineTA>
<NlmUniqueID>9309004</NlmUniqueID>
<ISSNLinking>0140-7791</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">defense</Keyword>
<Keyword MajorTopicYN="N">polyamines</Keyword>
<Keyword MajorTopicYN="N">systemic acquired resistance</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>04</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>08</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>08</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>8</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>8</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>8</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32839979</ArticleId>
<ArticleId IdType="doi">10.1111/pce.13874</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Aarts, N., Metz, M., Holub, E., Staskawicz, B. J., Daniels, M. J., & Parker, J. E. (1998). Different requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene-mediated signaling pathways in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 95, 10306-10311.</Citation>
</Reference>
<Reference>
<Citation>Ahou, A., Martignago, D., Alabdallah, O., Tavazza, R., Stano, P., Macone, A., … Tavladoraki, P. (2014). A plant spermine oxidase/dehydrogenase regulated by the proteasome and polyamines. Journal of Experimental Botany, 65, 1585-1603.</Citation>
</Reference>
<Reference>
<Citation>Alcázar, R., Altabella, T., Marco, F., Bortolotti, C., Reymond, M., Koncz, C., … Tiburcio, A. F. (2010). Polyamines: Molecules with regulatory functions in plant abiotic stress tolerance. Planta, 231, 1237-1249.</Citation>
</Reference>
<Reference>
<Citation>Alcázar, R., García, A. V., Kronholm, I., de Meaux, J., Koornneef, M., Parker, J. E., & Reymond, M. (2010). Natural variation at Strubbelig receptor kinase 3 drives immune-triggered incompatibilities between Arabidopsis thaliana accessions. Nature Genetics, 42, 1135-1139.</Citation>
</Reference>
<Reference>
<Citation>Alcázar, R., García-Martínez, J. L., Cuevas, J. C., Tiburcio, A. F., & Altabella, T. (2005). Overexpression of ADC2 in Arabidopsis induces dwarfism and late-flowering through GA deficiency. Plant Journal, 43, 425-436.</Citation>
</Reference>
<Reference>
<Citation>Angelini, R., Cona, A., Federico, R., Fincato, P., Tavladoraki, P., & Tisi, A. (2010). Plant amine oxidases “on the move”: An update. Plant Physiology and Biochemistry, 48, 560-564.</Citation>
</Reference>
<Reference>
<Citation>Bartsch, M., Gobbato, E., Bednarek, P., Debey, S., Schultze, J. L., Bautor, J., & Parker, J. E. (2006). Salicylic acid-independent ENHANCED DISEASE SUSCEPTIBILITY1 signaling in Arabidopsis immunity and cell death is regulated by the monooxygenase FMO1 and the Nudix hydrolase NUDT7. Plant Cell, 18, 1038-1051.</Citation>
</Reference>
<Reference>
<Citation>Bindschedler, L. V., Dewdney, J., Blee, K. A., Stone, J. M., Asai, T., Plotnikov, J., … Bolwell, G. P. (2006). Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance. Plant Journal, 47, 851-863.</Citation>
</Reference>
<Reference>
<Citation>Breitenbach, H. H., Wenig, M., Wittek, F., Jordá, L., Maldonado-Alconada, A. M., Sarioglu, H., … Corina, V. A. (2014). Contrasting roles of the APOPLASTIC aspartyl protease APOPLASTIC, ENHANCED DISEASE SUSCEPTIBILITY1-DEPENDENT1 and LEGUME LECTIN-LIKE PROTEIN1 in Arabidopsis systemic acquired resistance. Plant Physiology, 165, 791-809.</Citation>
</Reference>
<Reference>
<Citation>Cao, H., Glazebrook, J., Clarke, J. D., Volko, S., & Dong, X. (1997). The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell, 88, 57-63.</Citation>
</Reference>
<Reference>
<Citation>Carbon, S., Douglass, E., Dunn, N., Good, B., Harris, N. L., Lewis, S. E., … Westerfield, M. (2019). The gene ontology resource: 20 years and still GOing strong. Nucleic Acids Research, 47, D330-D338.</Citation>
</Reference>
<Reference>
<Citation>Chanda, B., Xia, Y., Mandal, M. K., Yu, K., Sekine, K., Gao, Q., … Kachroo, P. (2011). Glycerol-3-phosphate is a critical mobile inducer of systemic immunity in plants. Nature Genetics, 43, 421-427.</Citation>
</Reference>
<Reference>
<Citation>Chaouch, S., Queval, G., Vanderauwera, S., Mhamdi, A., Vandorpe, M., Langlois-Meurinne, M., … Noctor, G. (2010). Peroxisomal hydrogen peroxide is coupled to biotic defense responses by ISOCHORISMATE SYNTHASE1 in a daylength-related manner. Plant Physiology, 153, 1692-1705.</Citation>
</Reference>
<Reference>
<Citation>Chaturvedi, R., Venables, B., Petros, R. A., Nalam, V., Li, M., Wang, X., … Shah, J. (2012). An abietane diterpenoid is a potent activator of systemic acquired resistance. Plant Journal, 71, 161-172.</Citation>
</Reference>
<Reference>
<Citation>Chen, Z., Silva, H., & Klessig, D. F. (1993). Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science, 262, 1883-1886.</Citation>
</Reference>
<Reference>
<Citation>Cheng, C. Y., Krishnakumar, V., Chan, A. P., Thibaud-Nissen, F., Schobel, S., & Town, C. D. (2017). Araport11: A complete reannotation of the Arabidopsis thaliana reference genome. Plant Journal, 89, 789-804.</Citation>
</Reference>
<Reference>
<Citation>Cona, A., Rea, G., Angelini, R., Federico, R., & Tavladoraki, P. (2006). Functions of amine oxidases in plant development and defence. Trends in Plant Science, 11, 80-88.</Citation>
</Reference>
<Reference>
<Citation>Cuevas, J. C., López-Cobollo, R., Alcázar, R., Zarza, X., Koncz, C., Altabella, T., … Ferrando, A. (2008). Putrescine is involved in Arabidopsis freezing tolerance and cold acclimation by regulating abscisic acid levels in response to low temperature. Plant Physiology, 148, 1094-1105.</Citation>
</Reference>
<Reference>
<Citation>Cui, H., Tsuda, K., & Parker, J. E. (2015). Effector-triggered immunity: From pathogen perception to robust defense. Annual Review of Plant Biology, 66, 487-511.</Citation>
</Reference>
<Reference>
<Citation>Daudi, A., Cheng, Z., O'Brien, J. A., Mammarella, N., Khan, S., Ausubel, F. M., & Bolwell, G. P. (2012). The apoplastic oxidative burst peroxidase in Arabidopsis is a major component of pattern-triggered immunity. Plant Cell, 24, 275-287.</Citation>
</Reference>
<Reference>
<Citation>Del Río, L. A. (2015). ROS and RNS in plant physiology: An overview. Journal of Experimental Botany, 66, 2827-2837.</Citation>
</Reference>
<Reference>
<Citation>Després, C., DeLong, C., Glaze, S., Liu, E., & Fobert, P. R. (2000). The Arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors. Plant Cell, 12, 279-290.</Citation>
</Reference>
<Reference>
<Citation>Dodds, P. N., & Rathjen, J. P. (2010). Plant immunity: Towards an integrated view of plant-pathogen interactions. Nature Reviews Genetics, 11, 539-548.</Citation>
</Reference>
<Reference>
<Citation>Durner, J., Shah, J., & Klessig, D. F. (1997). Salicylic acid and disease resistance in plants. Trends in Plant Science, 2, 266-274.</Citation>
</Reference>
<Reference>
<Citation>Ellinger, D., & Voigt, C. A. (2014). Callose biosynthesis in Arabidopsis with a focus on pathogen response: What we have learned within the last decade. Annals of Botany, 114, 1349-1358.</Citation>
</Reference>
<Reference>
<Citation>Falk, A., Feys, B. J., Frost, L. N., Jones, J. D., Daniels, M. J., & Parker, J. E. (1999). EDS1, an essential component of R gene-mediated disease resistance in Arabidopsis has homology to eukaryotic lipases. Proceedings of the National Academy of Sciences of the United States of America, 96, 3292-3297.</Citation>
</Reference>
<Reference>
<Citation>Fan, W., & Dong, X. (2002). In vivo interaction between NPR1 and transcription factor TGA2 leads to salicylic acid-mediated gene activation in Arabidopsis. Plant Cell, 14, 1377-1389.</Citation>
</Reference>
<Reference>
<Citation>Feys, B. J., Wiermer, M., Bhat, R. A., Moisan, L. J., Medina-Escobar, N., Neu, C., … Parker, J. E. (2005). Arabidopsis SENESCENCE-ASSOCIATED GENE101 stabilizes and signals within an ENHANCED DISEASE SUSCEPTIBILITY1 complex in plant innate immunity. Plant Cell, 17, 2601-2613.</Citation>
</Reference>
<Reference>
<Citation>Fu, Z. Q., & Dong, X. (2013). Systemic acquired resistance: Turning local infection into global defense. Annual Review of Plant Biology, 64, 839-863.</Citation>
</Reference>
<Reference>
<Citation>González, M. E., Marco, F., Minguet, E. G., Carrasco-Sorli, P., Blazquez, M. A., Carbonell, J., … Pieckenstain, F. L. (2011). Perturbation of Spermine synthase gene expression and transcript profiling provide new insights on the role of the tetraamine spermine in Arabidopsis defense against Pseudomonas viridiflava. Plant Physiology, 156, 2266-2277.</Citation>
</Reference>
<Reference>
<Citation>Hartmann, M., Zeier, T., Bernsdorff, F., Reichel-Deland, V., Kim, D., Hohmann, M., … Zeier, J. (2018). Flavin monooxygenase-generated N-hydroxypipecolic acid is a critical element of plant systemic immunity. Cell, 173, 456-469.</Citation>
</Reference>
<Reference>
<Citation>Herrera-Vásquez, A., Salinas, P., & Holuigue, L. (2015). Salicylic acid and reactive oxygen species interplay in the transcriptional control of defense genes expression. Frontiers in Plant Science, 6, 1-9.</Citation>
</Reference>
<Reference>
<Citation>Hruz, T., Laule, O., Szabo, G., Wessendorp, F., Bleuler, S., Oertle, L., … Zimmermann, P. (2008). Genevestigator v3: A reference expression database for the meta-analysis of transcriptomes. Advances in Bioinformatics, 2008, 420747.</Citation>
</Reference>
<Reference>
<Citation>Jancewicz, A. L., Gibbs, N. M., & Masson, P. H. (2016). Cadaverine's functional role in plant development and environmental response. Frontiers in Plant Science, 7, 1-8.</Citation>
</Reference>
<Reference>
<Citation>Jiménez-Bremont, J. F., Marina, M., Guerrero-González, M. d. l. L., Rossi, F. R., Sánchez-Rangel, D., Rodríguez-Kessler, M., … Gárriz, A. (2014). Physiological and molecular implications of plant polyamine metabolism during biotic interactions. Frontiers in Plant Science, 5, 1-14.</Citation>
</Reference>
<Reference>
<Citation>Jung, H. W., Tschaplinski, T. J., Wang, L., Glazebrook, J., & Greenberg, J. T. (2009). Priming in systemic plant immunity. Science, 324, 89-91.</Citation>
</Reference>
<Reference>
<Citation>Kim, S. H., Kim, S. H., Yoo, S. J., Min, K. H., Nam, S. H., Cho, B. H., & Yang, K. Y. (2013). Putrescine regulating by stress-responsive MAPK cascade contributes to bacterial pathogen defense in Arabidopsis. Biochemical and Biophysical Research Communications, 437, 502-508.</Citation>
</Reference>
<Reference>
<Citation>León, J., Lawton, M. A., & Raskin, I. (1995). Hydrogen peroxide stimulates salicylic acid biosynthesis in tobacco. Plant Physiology, 108, 1673-1678.</Citation>
</Reference>
<Reference>
<Citation>Liu, C., Atanasov, K. E., Tiburcio, A. F., & Alcázar, R. (2019). The polyamine putrescine contributes to H2O2 and RbohD/F-dependent positive feedback loop in Arabidopsis PAMP-triggered immunity. Frontiers in Plant Science, 10, 894.</Citation>
</Reference>
<Reference>
<Citation>Lou, Y.-R., Ahmed, S., Yan, J., Adio, A. M., Powell, H. M., Morris, P. F., & Jander, G. (2019). Arabidopsis ADC1 functions as Nδ-acetylornithine decarboxylase. Journal of Integrative Plant Biology, 62, 601-613.</Citation>
</Reference>
<Reference>
<Citation>Lou, Y.-R., Bor, M., Yan, J., Preuss, A. S., & Jander, G. (2016). Arabidopsis NATA1 acetylates putrescine and decreases defense-related hydrogen peroxide accumulation. Plant Physiology, 171, 1443-1455.</Citation>
</Reference>
<Reference>
<Citation>Macho, A., & Zipfel, C. (2014). Plant PRRs and the activation of innate immune signaling. Molecular Cell, 54, 263-272.</Citation>
</Reference>
<Reference>
<Citation>Macho, A. P., Boutrot, F., Rathjen, J. P., & Zipfel, C. (2012). Aspartate oxidase plays an important role in Arabidopsis stomatal immunity. Plant Physiology, 159, 1845-1856.</Citation>
</Reference>
<Reference>
<Citation>Mammarella, N. D., Cheng, Z., Fu, Q., Daudi, A., Paul Bolwell, G., Dong, X., & Ausubel, F. M. (2015). Apoplastic peroxidases are required for salicylic acid-mediated defense against Pseudomonas syringae. Phytochemistry, 112, 110-121.</Citation>
</Reference>
<Reference>
<Citation>Marcé, M., Brown, D. S., Capell, T., Figueras, X., & Tiburcio, A. F. (1995). Rapid high-performance liquid chromatographic method for the quantitation of polyamines as their dansyl derivatives: Application to plant and animal tissues. Journal of Chromatography. B: Biomedical Applications, 666, 329-335.</Citation>
</Reference>
<Reference>
<Citation>Marco, F., Busó, E., & Carrasco, P. (2014). Overexpression of SAMDC1 gene in Arabidopsis thaliana increases expression of defense-related genes as well as resistance to Pseudomonas syringae and Hyaloperonospora arabidopsidis. Frontiers in Plant Science, 5, 1-9.</Citation>
</Reference>
<Reference>
<Citation>Marina, M., Maiale, S. J., Rossi, F. R., Romero, M. F., Rivas, E. I., Garriz, A., … Pieckenstain, F. L. (2008). Apoplastic polyamine oxidation plays different roles in local responses of tobacco to infection by the necrotrophic fungus Sclerotinia sclerotiorum and the biotrophic bacterium Pseudomonas viridiflava. Plant Physiology, 147, 2164-2178.</Citation>
</Reference>
<Reference>
<Citation>Mishina, T. E., & Zeier, J. (2007). Pathogen-associated molecular pattern recognition rather than development of tissue necrosis contributes to bacterial induction of systemic acquired resistance in Arabidopsis. Plant Journal, 50, 500-513.</Citation>
</Reference>
<Reference>
<Citation>Mitsuya, Y., Takahashi, Y., Berberich, T., Miyazaki, A., Matsumura, H., Takahashi, H., … Kusano, T. (2009). Spermine signaling plays a significant role in the defense response of Arabidopsis thaliana to cucumber mosaic virus. Journal of Plant Physiology, 166, 626-643.</Citation>
</Reference>
<Reference>
<Citation>Mittler, R., Vanderauwera, S., Suzuki, N., Miller, G., Tognetti, V. B., Vandepoele, K., … Breusegem, F. V. (2011). ROS signaling: The new wave? Trends in Plant Science, 16, 300-309.</Citation>
</Reference>
<Reference>
<Citation>Moller, S. G., & McPherson, M. J. (1998). Developmental expression and biochemical analysis of the Arabidopsis ATAO1 gene encoding an H2O2-generating diamine oxidase. Plant Journal, 13, 781-791.</Citation>
</Reference>
<Reference>
<Citation>Moschou, P. N., Sarris, P. F., Skandalis, N., Andriopoulou, A. H., Paschalidis, K. A., Panopoulos, N. J., & Roubelakis-Angelakis, K. A. (2009). Engineered polyamine catabolism preinduces tolerance of tobacco to bacteria and oomycetes. Plant Physiology, 149, 1970-1981.</Citation>
</Reference>
<Reference>
<Citation>Moschou, P. N., Wu, J., Cona, A., Tavladoraki, P., Angelini, R., & Roubelakis-Angelakis, K. A. (2012). The polyamines and their catabolic products are significant players in the turnover of nitrogenous molecules in plants. Journal of Experimental Botany, 63, 5003-5015.</Citation>
</Reference>
<Reference>
<Citation>Mou, Z., Fan, W., & Dong, X. (2003). Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell, 113, 935-944.</Citation>
</Reference>
<Reference>
<Citation>Návarová, H., Bernsdorff, F., Döring, A. C., & Zeier, J. (2012). Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity. Plant Cell, 24, 5123-5141.</Citation>
</Reference>
<Reference>
<Citation>Nühse, T., Bottrill, A., Jones, A., & Peck, S. (2007). Quantitative phosphoproteomic analysis of plasma membrane proteins reveals regulatory mechanisms of plant innate responses. Plant Journal, 51, 931-934.</Citation>
</Reference>
<Reference>
<Citation>O'Brien, J. A., Daudi, A., Finch, A., Butt, V. S., Whitelegge, J. P., Souda, P., … Bolwell, G. P. (2012). A peroxidase-dependent apoplastic oxidative burst in cultured Arabidopsis cells functions in MAMP-elicited defense. Plant Physiology, 158, 2013-2027.</Citation>
</Reference>
<Reference>
<Citation>O'Neill, E. M., Mucyn, T. S., Patteson, J. B., Finkel, O. M., Chung, E. H., Baccile, J. A., … Li, B. (2018). Phevamine a: A small molecule that suppresses plant immune responses. Proceedings of the National Academy of Sciences of the United States of America, 115, E9514-E9522.</Citation>
</Reference>
<Reference>
<Citation>Ono, Y., Kim, D. W., Watanabe, K., Sasaki, A., Niitsu, M., Berberich, T., … Takahashi, Y. (2012). Constitutively and highly expressed Oryza sativa polyamine oxidases localize in peroxisomes and catalyze polyamine back conversion. Amino Acids, 42, 867-876.</Citation>
</Reference>
<Reference>
<Citation>Planas-Portell, J., Gallart, M., Tiburcio, A. F., & Altabella, T. (2013). Copper-containing amine oxidases contribute to terminal polyamine oxidation in peroxisomes and apoplast of Arabidopsis thaliana. BMC Plant Biology, 13, 109.</Citation>
</Reference>
<Reference>
<Citation>Rojas, C. M., Senthil-Kumar, M., Wang, K., Ryu, C. M., Kaundal, A., & Mysore, K. S. (2012). Glycolate oxidase modulates reactive oxygen species-mediated signal transduction during nonhost resistance in Nicotiana benthamiana and Arabidopsis. Plant Cell, 24, 336-352.</Citation>
</Reference>
<Reference>
<Citation>Rossi, F. R., Marina, M., & Pieckenstain, F. L. (2015). Role of arginine decarboxylase (ADC) in Arabidopsis thaliana defence against the pathogenic bacterium Pseudomonas viridiflava. Plant Biology, 17, 831-839.</Citation>
</Reference>
<Reference>
<Citation>Sagor, G. H. M., Takahashi, H., Niitsu, M., Takahashi, Y., Berberich, T., & Kusano, T. (2012). Exogenous thermospermine has an activity to induce a subset of the defense genes and restrict cucumber mosaic virus multiplication in Arabidopsis thaliana. Plant Cell Reports, 31, 1227-1232.</Citation>
</Reference>
<Reference>
<Citation>Seifi, H. S., & Shelp, B. J. (2019). Spermine differentially refines plant defense responses against biotic and abiotic stresses. Frontiers in Plant Science, 10, 117.</Citation>
</Reference>
<Reference>
<Citation>Seifi, H. S., Zarei, A., Hsiang, T., & Shelp, B. J. (2019). Spermine is a potent plant defense activator against gray mold disease on Solanum lycopersicum, Phaseolus vulgaris, and Arabidopsis thaliana. Phytopathology, 109, 1367-1377.</Citation>
</Reference>
<Reference>
<Citation>Seo, S., Katou, S., Seto, H., Gomi, K., & Ohashi, Y. (2007). The mitogen-activated protein kinases WIPK and SIPK regulate the levels of jasmonic and salicylic acids in wounded tobacco plants. Plant Journal, 49, 899-909.</Citation>
</Reference>
<Reference>
<Citation>Shine, M. B., Xiao, X., Kachroo, P., & Kachroo, A. (2019). Signaling mechanisms underlying systemic acquired resistance to microbial pathogens. Plant Science, 279, 81-86.</Citation>
</Reference>
<Reference>
<Citation>Tada, Y., Spoel, S. H., Pajerowska-Mukhtar, K., Mou, Z., Song, J., Wang, C., … Dong, X. (2008). Plant immunity requires conformational charges of NPR1 via S-nitrosylation and thioredoxins. Science, 321, 952-956.</Citation>
</Reference>
<Reference>
<Citation>Tiburcio, A. F., & Alcázar, R. (2018). Potential applications of polyamines in agriculture and plant biotechnology. Methods in Molecular Biology., 1694, 489-508.</Citation>
</Reference>
<Reference>
<Citation>Tiburcio, A. F., Altabella, T., Bitrián, M., & Alcázar, R. (2014). The roles of polyamines during the lifespan of plants: From development to stress. Planta, 240, 1-18.</Citation>
</Reference>
<Reference>
<Citation>Tornero, P., Chao, R. A., Luthin, W. N., Goff, S. A., & Dangl, J. L. (2002). Large-scale structure-function analysis of the Arabidopsis RPM1 disease resistance protein. Plant Cell, 14, 435-450.</Citation>
</Reference>
<Reference>
<Citation>Torres, M. A. (2010). ROS in biotic interactions. Physiologia Plantarum, 138, 414-429.</Citation>
</Reference>
<Reference>
<Citation>Torres, M. A., Dangl, J. L., & Jones, J. D. G. (2002). Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proceedings of the National Academy of Sciences of the United States of America, 99, 517-522.</Citation>
</Reference>
<Reference>
<Citation>Truman, W., Bennet, M. H., Kubigsteltig, I., Turnbull, C., & Grant, M. (2007). Arabidopsis systemic immunity uses conserved defense signaling pathways and is mediated by jasmonates. Proceedings of the National Academy of Sciences of the United States of America, 104, 1075-1080.</Citation>
</Reference>
<Reference>
<Citation>Vilas, J. M., Romero, F. M., Rossi, F. R., Marina, M., Maiale, S. J., Calzadilla, P. I., … Gárriz, A. (2018). Modulation of plant and bacterial polyamine metabolism during the compatible interaction between tomato and Pseudomonas syringae. Journal of Plant Physiology, 231, 281-290.</Citation>
</Reference>
<Reference>
<Citation>Vlot, A. C., Dempsey, D. A., & Klessig, D. F. (2009). Salicylic acid, a multifaceted hormone to combat disease. Annual Review of Phytopathology, 47, 177-206.</Citation>
</Reference>
<Reference>
<Citation>Walters, D. R. (2003). Polyamines and plant disease. Phytochemistry, 64, 97-107.</Citation>
</Reference>
<Reference>
<Citation>Wang, C., El-Shetehy, M., Shine, M. B., Yu, K., Navarre, D., Wendehenne, D., … Kachroo, P. (2014). Free radicals mediate systemic acquired resistance. Cell Reports, 7, 348-355.</Citation>
</Reference>
<Reference>
<Citation>Wang, W., Paschalidis, K., Feng, J. C., Song, J., & Liu, J. H. (2019). Polyamine catabolism in plants: A universal process with diverse functions. Frontiers in Plant Science, 10, 561.</Citation>
</Reference>
<Reference>
<Citation>Wildermuth, M. C., Dewdney, J., Wu, G., & Ausubel, F. M. (2001). Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature, 414, 562-565.</Citation>
</Reference>
<Reference>
<Citation>Wimalasekera, R., Tebartz, F., & Scherer, G. F. E. (2011). Polyamines, polyamine oxidases and nitric oxide in development, abiotic and biotic stresses. Plant Science, 181, 593-603.</Citation>
</Reference>
<Reference>
<Citation>Wu, D., von Roepenack-Lahaye, E., Buntru, M., de Lange, O., Schandry, N., Pérez-Quintero, A. L., … Lahaye, T. (2019). A plant pathogen type III effector protein subverts translational regulation to boost host polyamine levels. Cell Host and Microbe, 26, 638-649.e5.</Citation>
</Reference>
<Reference>
<Citation>Yamakawa, H., Kamada, H., Satoh, M., & Ohashi, Y. (1998). Spermine is a salicylate-independent endogenous inducer for both tobacco acidic pathogenesis-related proteins and resistance against tobacco mosaic virus infection. Plant Physiology, 118, 1213-1222.</Citation>
</Reference>
<Reference>
<Citation>Yoda, H., Yamaguchi, Y., & Sano, H. (2003). Induction of hypersensitive cell death by hydrogen peroxide produced through polyamine degradation in tobacco plants. Plant Physiology, 132, 1973-1981.</Citation>
</Reference>
<Reference>
<Citation>Zhang, J., Shao, F., Li, Y., Cui, H., Chen, L., Li, H., … Zhou, J.-M. (2007). A Pseudomonas syringae effector inactivates MAPKs to suppress PAMP-induced immunity in plants. Cell Host & Microbe, 1, 175-185.</Citation>
</Reference>
<Reference>
<Citation>Zhang, S., & Klessig, D. F. (1997). Salicylic acid activates a 48-kD MAP kinase in tobacco. Plant Cell, 9, 809-824.</Citation>
</Reference>
<Reference>
<Citation>Zhang, Y., Fan, W., Kinkema, M., Li, X., & Dong, X. (1999). Interaction of NPR1 with basic leucine zipper protein transcription factors that bind sequences required for salicylic acid induction of the PR-1 gene. Proceedings of the National Academy of Sciences of the United States of America, 96, 6523-6528.</Citation>
</Reference>
<Reference>
<Citation>Zhang, Y., & Li, X. (2019). Salicylic acid: Biosynthesis, perception, and contributions to plant immunity. Current Opinion in Plant Biology, 50, 29-36.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
<li>Espagne</li>
</country>
<region>
<li>Catalogne</li>
<li>District de Düsseldorf</li>
<li>Rhénanie-du-Nord-Westphalie</li>
</region>
<settlement>
<li>Barcelone</li>
<li>Düsseldorf</li>
</settlement>
</list>
<tree>
<country name="Espagne">
<region name="Catalogne">
<name sortKey="Liu, Changxin" sort="Liu, Changxin" uniqKey="Liu C" first="Changxin" last="Liu">Changxin Liu</name>
</region>
<name sortKey="Alcazar, Ruben" sort="Alcazar, Ruben" uniqKey="Alcazar R" first="Rubén" last="Alcázar">Rubén Alcázar</name>
<name sortKey="Arafaty, Nazanin" sort="Arafaty, Nazanin" uniqKey="Arafaty N" first="Nazanin" last="Arafaty">Nazanin Arafaty</name>
<name sortKey="Atanasov, Kostadin E" sort="Atanasov, Kostadin E" uniqKey="Atanasov K" first="Kostadin E" last="Atanasov">Kostadin E. Atanasov</name>
<name sortKey="Murillo, Ester" sort="Murillo, Ester" uniqKey="Murillo E" first="Ester" last="Murillo">Ester Murillo</name>
<name sortKey="Tiburcio, Antonio F" sort="Tiburcio, Antonio F" uniqKey="Tiburcio A" first="Antonio F" last="Tiburcio">Antonio F. Tiburcio</name>
</country>
<country name="Allemagne">
<region name="Rhénanie-du-Nord-Westphalie">
<name sortKey="Zeier, Jurgen" sort="Zeier, Jurgen" uniqKey="Zeier J" first="Jürgen" last="Zeier">Jürgen Zeier</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantPathoEffV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000069 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000069 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantPathoEffV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32839979
   |texte=   Putrescine elicits ROS-dependent activation of the salicylic acid pathway in Arabidopsis thaliana.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32839979" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantPathoEffV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 16:00:34 2020. Site generation: Sat Nov 21 16:01:01 2020